skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Plunkett, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties. image 
    more » « less